

Aide

Aide is a set of classes to assist Laravel and Silex development.

Contents:

	Authorization
	Policies

	Scopes

	An Example in the Context of an Application

	Usage Within Laravel

	Ensuring Policies Are Used

	Policy/Scope Instantiation Without Trait Methods

	Manually Specifying Policy Classes

	Closed System

	Mass Assignment Protection

	Validation
	Instantiation

	Usage

	An Example

License

Copyright (c) 2014 Jason Daly [http://www.deefour.me] (deefour [https://github.com/deefour]). Released under the MIT License [http://deefour.mit-license.org/].

Authorization

Aide provides a lightweight, object-oriented authorization system based heavily on the popular Ruby gem, Pundit [https://github.com/elabs/pundit].

Policies

At the core of Aide’s authorization is the notion of policy classes. Policy classes must extend Deefour\Aide\Authorization\AbstractPolicy. Each method should return a boolean. For example

use Deefour\Aide\Authorization\AbstractPolicy;

class ArticlePolicy extends AbstractPolicy {

 public function edit() {
 return $this->user->id === $this->record->author_id;
 }

}

When a policy class is instantiated through Aide, a $record to authorize is passed along with a $user to authorize against. Using the helper methods provided in Deefour\Aide\Authorization\PolicyTrait is optional; you could instantiate a policy and check authorization for the $user yourself

$user = User::find(1); // find some User with id = 1
$article = $user->articles()->first(); // get the first Article authored by the User

$policy = new ArticlePolicy($user, $article);

$policy->edit(); // true

Assumptions

When generating a policy class for an object via Aide’s helpers, the following assumptions are made.

	The policy class has the same name as the object being authorized, suffixed with “Policy” (though this can be overridden)

	The first argument is the user to authorize for the action. When using Aide’s helpers, this requires you create a currentUser method on the class using Deefour\Aide\Authorization\PolicyTrait.

	The second argument is the object you wish to check the authorization against.

Scopes

Aide also provides support for policy scopes. A policy scope will typically generate an iterable collection of objects the current user is able to access

For example, the scope against the Article model below will return a collection of only published articles unless the current user is an administrator, in which case a collection of all articles will be returned.

use Deefour\Aide\Authorization\AbstractScope;

class ArticleScope extends AbstractScope {

 public function resolve() {
 if ($this->user->isAdmin()) {
 return $this->scope->all();
 } else {
 return $this->scope->where('published', true)->get();
 }
 }

}

When a policy scope is instantiated through Aide, the current $user and a $scope object are passed into the derived policy scope. By default, the policy scope is determined based on the name of the $scope object.

$user = User::find(1);
$policyScope = new ArticleScope($user, Article::newQuery());

$articles = $policyScope->resolve(); // collection of Articles

Assumptions

When generating a policy scope via Aide’s helpers, the following assumptions are made.

	The policy scope has the same name as the object being authorized, suffixed with “Scope” (though this can be overridden)

	The first argument is the user to filter the scope for. When using Aide’s helpers, this requires you create a currentUser method on the class using Deefour\Aide\Authorization\PolicyTrait.

	The second argument is the scope object you wish to modify based on the state/details of the $user.

An Example in the Context of an Application

Using Laravel, the following could be added to the BaseController.

class BaseController extends Controller {

 use Deefour\Aide\Authorization\PolicyTrait;

 protected function currentUser() {
 return Auth::user() ?: new User;
 }

}

Now, for some ArticleController, to authorize the current user against the ability to edit a specific Article, the edit() method would like this

public function edit($id) {
 $article = Article::find($id);

 $this->authorize($article); // if NOT authorized, exception will be thrown

 return View::make('articles.edit'); // display the form
}

The $this->authorize($article); line will generate a fresh ArticlePolicy instance through Aide, passing the current user and the fetched $article into it. The ArticlePolicy::edit() method will be called, and if the user is authorized to edit the article, the view for the action will render as expected.

Usage Within Laravel

Aide provides a service provider and facade for the Policy class to make interacting with it very simple inside of a Laravel application.

Service Provider

In Laravel’s app/config/app.php file, add the class:Deefour\Aide\Authorization\PolicyServiceProvider class to the list of providers

'providers' => array(

 // ...

 'Deefour\Aide\Support\Facades\PolicyServiceProvider',

),

// ...

The IoC container is responsible for instantiating a single, shared instance of the Deefour\Aide\Authorization\Policy class. This is done outside the scope of a controller method, meaning the IoC container has no access to or knowledge of the currentUser method that may exist within a base controller. Further, the API provided by the Policy facade does not expect a user to be passed. This means instead of calling

$app['policy']->policy(Auth::user(), new Article);

the following is actually correct

$app['policy']->policy(new Article);

To accomplish this, the service provider looks for configuration in an app/config/policy.php file. At a minimum, the following is required when using the policy service provider.

<?php

return array(

 'user' => function() {

 return Auth::user() ?: new User; // this logic can be replaced with anything you like.

 },

);

To keep things DRY, the currentUser method in the base controller could be modified to take advantage of this same Closure.

public function currentUser() {
 return call_user_func(Config::get('policy.user'));
}

Policy Facade

With the service provider in place, the instantiated policy class can be accessed via the main application container.

$articlePolicy = $app['policy']->policy(new Article);

Remember, you can also instantiate the policy provider yourself.

use Deefour\Aide\Authorization\Policy;

$policyProvider = new Policy(Auth::user());
$articlePolicy = $policyProvider->policy(new Article);

This can be simplified through the use of a Policy facade. Add the following to app/config/app.php

'aliases' => array(

 // ...

 'Policy' => 'Deefour\Aide\Support\Facades\Policy',

),

// ...

The same functionality above is now as simple as this

$articlePolicy = Policy::policy(new Article);

Policies in Views

The facade makes working with policies in views simple too. For example, to conditionally show an ‘Edit’ link for a specific $article based on the current user’s ability to edit that article, the following could be used in a blade template

@if (Policy::policy($article)->edit())
 $article->id]) }}">Edit
@endif

Handling Unauthorized Exceptions

If false is returned by the authorize() call, a Deefour\Aide\Authorization\NotAuthorizedException will be thrown. This exception can be caught by Laravel with the following in app/start/global.php.

use Deefour\Aide\Authorization\NotAuthorizedException;

App::error(function(NotAuthorizedException $exception) {
 // Handle the exception...
});

Note

There is nothing Laravel-specific about Aide’s authorization component. The Deefour\Aide\Authorization\PolicyTrait trait can be used in any class.

Ensuring Policies Are Used

Again using Laravel as an example, an after filter can be configured to prevent accidentally unauthorized actions from being wide open by default. A filter in the constructor of the ArticleController could look like this

public function __construct() {
 $this->afterFilter(function() {
 $this->verifyAuthorized();
 }, ['except' => 'index']);
}

There is a similar method to ensure a scope is used, which is particularly useful for index actions where a collection of objects is rendered and is dependent on each user.

public function __construct() {
 $this->afterFilter(function() {
 $this->requirePolicyScoped();
 }, ['only' => 'index']);
}

Policy/Scope Instantiation Without Trait Methods

Policies and scopes can easily be retrieved using static or instance methods on the Deefour\Aide\Authorization\Policy class.

Static Instantiation

The following methods are statically exposed:

	Policy::policy()

	Policy::policyOrFail()

	Policy::scope()

	Policy::scopeOrFail()

For example:

use Deefour\Aide\Authorization\Policy;

$user = User::find(1);
$article = $user->articles()->first();

Policy::policy($user, $article);
Policy::policyOrFail($user, $article);

Policy::scope($user, new Article);
Policy::scopeOrFail($user, new Article);

The ...OrFail version of each method will throw a Deefour\Aide\Authorization\NotDefinedException exception if the policy class Aide tries to instantiate doesn’t exist.

Instance Instantiation

A limited version of the above API is available when creating an instance of the Policy class.

	Policy::policy()

	Policy::scope()

	Policy::authorize()

use Deefour\Aide\Authorization\Policy;

$user = User::find(1);
$article = $user->articles()->first();
$policy = new Policy($user);

$policy->policy($article);

$policy->scope($article);

$policy->authorize($article, 'edit');

Note

The authorize method in this case requires an action/method be passed as the second argument.

The policy() and scope() methods are pass-through’s to the ...OrFail() methods on the PolicyTrait; exceptions will be thrown if a policy or scope cannot be found.

Manually Specifying Policy Classes

The policy class Aide tries to instantiate for an object can be overridden. Given the following scenario

use Deefour\Aide\Authorization\Policy;

class ArticlePolicy {}

class Article { }
class NewsArticle extends Article { }

Policy::policyOrFail(new Article); // returns fresh ArticlePolicy instance
Policy::policyOrFail(new NewsArticle); // throws Deefour\Aide\Authorization\NotDefinedException

Aide can be instructed to instantiate an ArticlePolicy class for the NewsArticle through a policyClass() method on Article (since :class:`NewsArticle` extends it).

use Deefour\Aide\Authorization\Policy;

class ArticlePolicy {}

class Article {

 public function policyClass() {
 return 'ArticlePolicy';
 }

}
class NewsArticle extends Article { }

Policy::policyOrFail(new Article); // returns fresh ArticlePolicy instance
Policy::policyOrFail(new NewsArticle); // returns fresh ArticlePolicy instance

Similarly, if a name() method is provided on the object, the string returned will be used as the class prefix for the policy class Aide tries to instantiate.

use Deefour\Aide\Authorization\Policy;

class PostPolicy {}

class Article {

 public function name() {
 return 'Post';
 }

}

Policy::policyOrFail(new Article); // returns fresh PostPolicy instance

Closed System

Many apps only allow authenticated users to perform most actions. Instead of verifying on every policy action that the current user is not null, unpersisted in the database, or similarly not a legitimately authenticated user, this can be done through a special ApplicationPolicy that your other policy classes extend.

use Deefour\Aide\Authorization\AbstractPolicy;
use Deefour\Aide\Authorization\NotAuthorizedException;

class ApplicationPolicy extends AbstractPolicy {

 public function __construct($user, $record) {
 if (is_null($user) or ! $user->exists) {
 throw new NotAuthorizedException;
 }

 parent::__construct($user, $record);
 }

}

class ArticlePolicy extends ApplicationPolicy { }

Mass Assignment Protection

A special permittedAttributes method can be created on a policy to conditionally provide a whitelist of attributes for a given request by a user to create or modify a record.

use Deefour\Aide\Authorization\AbstractPolicy;

class ArticlePolicy extends AbstractPolicy {

 public function permittedAttributes() {
 $attributes = ['title', 'body',];

 // prevent the author and slug from being modified after the article
 // has been persisted to the database.
 if (! $this->record->exists) {
 return array_merge($attributes, ['user_id', 'slug',]);
 }

 return $attributes;
 }

}

This policy method can be used within a controller to filter unauthorized attributes from being set on a model via mass assignment. Again, in a Laravel controller action (`Repository` below comes from a facade provided by Aide for Laravel)

$article = Article::find(1);
$repository = Repository::make($article);
$policy = Policy::make($article);

$repository->update(
 $policy->permittedAttributes(Input::get('article'))
);

Validation

Aide provides an abstraction for validating entities using 3rd party validation libraries. Out of the box Aide supports Laravel’s validator from the illuminate/validation package [https://packagist.org/packages/illuminate/validation]. The example below will use the Deefour\Aide\Validation\IlluminateValidator.

Instantiation

To validate an entity, a new instance of the validator must be created. This typically will be done within a service provider.

use Illuminate\Validation\Factory;
use Symfony\Component\Translation\Translator;
use Deefour\Aide\Validation\IlluminateValidator as Validator;
use Symfony\Component\Translation\MessageSelector;

$translator = new Translator('en', new MessageSelector);
$validator = new Factory($translator);

$validator = new Validator($factory);

Usage

With this new $validator instance, any class that extends Deefour\Aide\Validation\ValidatableInterface can be validated easily. For example, given the following User entity

// AbstractEntity implements the Deefour\Aide\Validation\ValidatableInterface
use Deefour\Aide\Persistence\Entity\AbstractEntity;

class Article extends AbstractEntity {

 // attributes
 public $title;
 public $body;

 // validation rules
 public function validations() {
 return [
 'title' => 'required',
 'body' => 'required',
];
 }

}

validation on a Article instance could be done as follows

$entity = new Article(['title' => 'A Great Title', 'body' => 'Lots of text...']);

$validator->setEntity($entity);

$validator->isValid(); // boolean whether the entity passes validation rules or not

$validator->errors(); // array, keyed by attribute names, with array values containing list of errors for each attribute

The raw validation instance behind the abstraction Aide provides can also be accessed.

$validator->getValidator(); // returns the \Illuminate\Validation\Factory instance

Validation Rules

Part of the Deefour\Aide\Validation\ValidatableInterface contract is the following

/**
 * List of rules to use in the validation abstraction layer to ensure all required
 * information has been provided in the expected format.
 *
 * @param array $context [optional]
 * @return array
 */
public function validations(array $context = []);

Note

This is a strict requirement. The Deefour\Aide\Persistence\Entity\AbstractEntity class that all entity classes are to extend defines an implementation of this validations() method that will throw a \BadMethodCallException in an attempt to prevent the developer from forgetting to set up proper validation rules.

The User entity Aide provides contains a simple set of default rules.

public function validations(array $context = []) {
 return [
 'first_name' => ['required', 'between:3,30'],
 'last_name' => ['required', 'between:3,30'],
 'email' => ['required', 'email'],
];
}

The keys match attribute names. The values are arrays of strings matching the format Laravel’s validator expects. See the basic usage [http://laravel.com/docs/validation#basic-usage] for Laravel’s Validator to learn more about the above syntax.

Context

When there is a need to validate against external data, configuration, etc..., a special context can be built up on the validator. The context is passed into every validations() method, and as the 2nd argument to all Closure validation rules.

With the context being passed into the validations() method, rules can be conditionally set.

First, set the entity and context on the validator

$user = new User(['first_name' => 'Jason', 'email' => 'jason@deefour.me']);

$validator->setEntity($user)
 ->setContext(['last_name_max' => 20]);

Then refer to the context and make the validation rule dependent on it’s value.

public function validations(array $context = []) {
 $lastNameMax = array_key_exists('last_name_max', $context) ? $context['last_name_max'] : 30;

 return [
 'first_name' => ['required', 'between:3,30'],
 'last_name' => ['required', 'between:3,' . $lastNameMax],
 'email' => ['required', 'email'],
];
}

Rule Callbacks

There are times where more complex validation is required for a rule. PHP Closures can be appended to the rules. The same context is passed to each Closure rule too.

> Note: Both within the validations() method itself and the Closure rules, $this can be used to access attributes or other methods on the entity instance.

For example, to do a dns lookup against the domain used for the email address on the User entity above, the example could be expanded as follows

public function validations(array $context = []) {
 $rules = [
 'first_name' => ['required', 'between:3,30'],
 'last_name' => ['required', 'between:3,30'],
 'email' => ['required', 'email'],
];

 $rules['dns-lookup'] = function() {
 $email = $this->email;
 $domain = substr($email, mb_strpos($email, '@'));

 if (dns_get_record($domain) === false) {
 return 'invalid-hostname';
 }
 };

 return $rules;
}

The validation Closure will be considered failing if a string is returned. The returned string should match a key for a message template. The Closure rules are not keyed in the validation rules do not have ot be keyed by a specific attribute on the entity. It is important the developer be aware of this, Because the string 'dns-lookup' does not match any attributes on the entity

Message Templates

The base Deefour\Aide\Validation\AbstractValidator instance has a currently-very-limited-but-growing set of error message templates.

protected $messageTemplates = array(
 'required' => '%s is required',
 'email' => '%s must be a valid email address',
 'date' => '%s is not a valid date',
 'digits_between' => '%s is out of bounds',
);

The collection of error messages returned when calling $validator->errors() is composed of message templates like those above after having their sprintf tokens replaced by data from the validator. This token replacement currently does not leverage translation/localization or other sophisticated message replacement strategies. The single %s is replaced with the attribute name related to each error message. An attributes name like first_name will be transformed into first name by removing the snake case.

Entity Message Templates

Any entity can define it’s own additional message templates. Since there is no default 'invalid-hostname' message template defined, it can be defined directly on the User entity.

protected $messageTemplates = array(
 'invalid-hostname' => '%s contains an invalid/unknown domain',
);

An Example

Let’s look at a full example within the context of a Laravel controller action.

public function update($id) {
 $user = User::find($id)->toEntity(); // toEntity() is an Aide method
 $input = Input::get('user');
 $validator = $this->validator;

 $errors = $validator->setEntity($user)->errors();

 if (! empty($errors)) {
 // error: invalid data
 return View::make('user.edit', compact('user', 'input', 'errors'));
 }

 // success
 return Redirect::to('home');
}

Index

 nav.xhtml

 Table of Contents

 		Aide

 		Authorization

 		Policies

 		Assumptions

 		Scopes

 		Assumptions

 		An Example in the Context of an Application

 		Usage Within Laravel

 		Service Provider

 		Policy Facade

 		Policies in Views

 		Handling Unauthorized Exceptions

 		Ensuring Policies Are Used

 		Policy/Scope Instantiation Without Trait Methods

 		Static Instantiation

 		Instance Instantiation

 		Manually Specifying Policy Classes

 		Closed System

 		Mass Assignment Protection

 		Validation

 		Instantiation

 		Usage

 		Validation Rules

 		Context

 		Rule Callbacks

 		Message Templates

 		An Example

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

